(3)了解逻辑联结词“或”、“且”、“非”的含义, 理解全称量词与存在量词的意义,能正确地对含有一个量词的命题进行否定。
2.函数
考试内容:
映射。函数的概念及其表示。函数的有界性、单调性、奇偶性、周期性。基本初等函数及其图象。有理数指数幂的运算性质。对数的运算性质。三角函数的概念。同角三角函数的基本关系式。三角函数的诱导公式。两角和与差、二倍角的正弦、余弦、正切公式。初等函数。函数极限的概念、意义以及运算法则。连续函数的概念。导数的概念与意义。函数的和、差、积、商的求导法则。复合函数的求导法则。二阶导数。隐函数的导数。函数的微分。导数的简单应用。不定积分的概念、性质和计算。定积分的概念、性质和计算牛顿一莱布尼茨公式。
考试要求:
(1)了解映射的概念。掌握函数的基本性质(定义域、值域、有界性、单调性、奇偶性、周期性)。了解函数的零点与方程根的联系。理解基本初等函数的图象与性质之间的关系,掌握基本初等函数的性质以及应用。
(2)理解分数指数幂的概念,掌握有理数指数幂的运算性质。理解对数的概念,掌握对数的运算性质。
(3)了解角、弧度制、任意角的三角函数、三角函数线等概念。掌握同角三角函数的基本关系式、诱导公式,掌握两角和与差、二倍角的正弦、余弦、正切公式,掌握二倍角等三角公式的内在联系以及公式在求值、化简、证明中的应用。掌握正弦函数、余弦函数、正切函数的图象、性质以及图象之间的变换规律,掌握正弦定理、余弦定理在解斜三角形中的应用。
(4)了解初等函数的概念。能够运用初等函数的图象与性质解决某些简单的实际问题。
(5)理解函数极限的概念、意义以及运算法则,掌握函数极限的计算方法。掌握连续函数的概念与性质。
(6)了解导数概念的实际背景,理解导数的几何意义。
(7)掌握基本导数公式,能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数的导数,能求隐函数的导数。了解二阶导数的定义及求法。
(8)能利用导数研究函数的单调性,会求函数的单调区间;会用导数求函数的极大值、极小值;会求闭区间上连续函数的最大值、最小值;会利用导数解决某些实际问题。
(9)了解不定积分的定义、性质。掌握基本积分表。会用不定积分的性质和基本积分公式求简单函数的不定积分。
(10)理解定积分的定义、性质、几何意义。掌握牛顿一莱布尼茨公式。会用定积分的性质和牛顿一莱布尼茨公式求简单函数的定积分。
3.不等式、数列
考试内容:
不等式。不等式的性质。不等式的证明。不等式的解法。含绝对值不等式。基本不等式。数列的概念。等差数列与等比数列。数列的前n项和。数列极限的概念与运算。
考试要求:
(1)掌握不等式的基本性质,会用分析法、综合法、比较法和反证法证明简单不等式。(2)了解不等式的同解原理。掌握简单不等式的解法,理解含绝对值不等式及其解法。
(3)理解算术平均与几何平均不等式、贝努利不等式、柯西不等式以及应用。
(4)理解等差数列、等比数列的概念、通项公式以及前n项和公式的推导方法,掌握公式并能熟练运用。
(5)掌握线性递归数列的概念及其通项公式的求法。
(6)理解数列极限的概念、意义以及运算法则,掌握数列极限的计算方法。
4.排列组合与二项式定理
考试内容:
排列。组合。二项式定理。
考试要求:
(1)了解分类计数原理和分步计数原理。
(2)理解排列、组合、排列数、组合数等概念,掌握常见排列或组合问题的解决方法。
(3)掌握相异元素允许重复的排列与组合、不尽相异元素的排列与组合问题的解法。理解抽屉原理以及应用。
(4)掌握二项式定理以及二项展开式的性质以及应用。
5.向量与复数
考试内容:
向量的概念。向量的运算。向量基本定理及坐标表示。向量的运用。复数的概念。复数的运算。
考试要求:
共5页: 上一页12345下一页